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variables grows large. Rather than use data to test hypotheses, the first chapter presents
a series of methods that allow the researcher to identify the relevant predictive variables
within the data. The methods allow for fitting models consisting of hundreds of variables,
while selecting only a small subset. Interaction effects, normally left unmodeled, and small
effects can be identified. This is done by recasting the problem as one of variable selection.

Smoothing splines are incorporated to allow for nonlinearities in the data.

The second chapter uses variable selection methods to identify treatment effect heterogeneity,
by placing separate sparsity constraints over differing causal heterogeneity parameters of
interest within a support vector machine classifier. As confirmed in simulation studies, the
proposed method tends to yield lower false discovery rate than commonly used alternatives.
For empirical illustrations, I apply the proposed method to randomized field experiments

from political science and economics.

The third chapter develops a sequential segmentation spline method that identifies the loca-
tion and number of changepoints in a series of observations with a smooth time component,
using a modified BIC statistic as a stopping rule. I explore the method in a large-n, un-
balanced panel setting with George W. Bush’s approval data, a small-n time series with

median DW-NOMINATE scores for each Congress over time, and a series of simulations.
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The method performs favorably in terms of visual inspection, residual properties, and event

detection relative to extant smoothers.

The final chapter identifies effects that correspond with jurisdictional boundaries, while
allowing for smooth geographic correlation. The method combines smoothing splines with
variable selection, identifying non-zero jurisdiction-specific effects. The proposed method
offers researchers the ability to fit a large number of effects, from dozens to hundreds, while
only returning the most relevant effects. Simulations show that the method has a low false
discovery rate, and is quite powerful. Applications to African GDP data, US voting patterns,

and US crime rates illustrate the proposed method’s efficacy and use.
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Chapter 1

An Introduction to Data-Driven Hypothesis Generation

1.1 Introduction

Uncovering causal relations in data is central to social science. Well-developed methods
exist to test a small number of pre-specified hypotheses, while accounting for known con-
founders (e.g., King, 1998). As the complexity of data and the number of variables grow,
estimating scores or hundreds of parameters grows infeasible. Infeasible, though, is not the
same as uninteresting. Including these additional parameters can lead to a much more subtle
depiction of the data than available through current methods. I propose a series of methods
that allow the estimation of complex models while producing interpretable results.

Rather than conduct simultaneous tests of large numbers of variables, this dissertation
concerns itself with a wholly separate approach to using data: that of discovery rather than
inference. Common practice relies on theory-driven variable selection, where a priori theory
generates some empirical implication, and inference is conducted. This dissertation turns
this entire process on its head. Rather than assert a model and a hypothesis, which is then
tested, I propose methods that allow for the selection of a sparse model. The sparse model
is selected such that most coefficients are set to zero, and estimated so as to minimize a
predictive criterion. The proposed methods select hypotheses that the researcher should
have asked. Balancing model fit against model size guards against overfitting.

The proposed methods allow the fitting of complex models, while returning parsimonious
results. A large number of variables can be considered, hundreds in many cases, with as few

as ten selected. This dissertation presents just a few of the cases where these methods



may be helpful. A prominent field experiment conducted in New Haven in 1998 consisted
of four crossed factors aimed at increasing voter turnout: one of three appeals (civic duty,
neighborhood solidarity, or a close election), zero to three mailings sent, seven possible
phone messages, and a personal visit (Gerber and Green, 2000). All possible interactions
among these factors produce 279 different effects. Analyses that only considers main effects
leaves these interactions unmodeled and unexplored. Instead of “fishing” for significant
interactions, I consider all main and interactive effects simultaneously, selecting the most
powerful effects.

The proposed methods differ from prominent work in political science that have fit com-
plex models to data (Green and Kern, 2010a; Beck et al., 2000; Hill and McCulloch, 2007).
The most commonly used methods fit smooth, high-dimensional curves to data, as in with
neural networks (Ripley, 1996) or sums-of-trees models (Breiman, 2001; Chipman et al.,
2010). These models are difficult to interpret; no coefficients are returned that can be re-
layed back to some independent variables of interest in a straightforward manner. The
proposed methods remedy this by producing coefficients for a (possibly vast) number of
variables. Setting most of these coefficients to zero serves to select relevant variables, and
their coefficients can be interpreted in a normal manner. I refer to these methods, as ap-
plied by political and other social scientists, as “data-driven hypothesis generation,” so as
to separate it from the prediction problem. These selected variables can either be tested on
a different dataset, or used to further theory by suggesting previously unrecognized stylized
facts.

Two sets of effects are most amenable to this approach: small effects and interaction
effects. Both are considered in this dissertation. Large effects are already well-known: pre-
vious voters are more likely to vote in the future; local geographic conditions and population
density predict growth; previous Presidential approval predicts current approval; and so on.
Smaller effects, in the presence of large effects, are difficult to distinguish from noise (Gelman
and Weakliem, 2007). This is especially the case when the researcher has many plausible

small effects over which she is agnostic. This dissertation proposes a method that explicitly



separates out small effects from known large effects, so the former can be identified and not
washed out by the latter.

The second set of effects most open to this approach are interaction effects. Though
main effects are the most important, in terms of explanation, interaction effects are often
the most interesting, especially in identifying when the effect of a key covariate varies sys-
tematically across the values of another covariate. Within the context of experimental or
quasi-experimental data, interactions can be used to parameterize causal heterogeneity. For
example, a treatment may have an effect that varies systematically across different demo-
graphic subgroups. The proposed method uncovers that a job training program was least
effective for black recipients with no degree, but most effective for older, unemployed re-
cipients. This level of fine-grained analysis cannot be accommodated by existing methods.
Interaction effects can also be used to capture effect heterogeneity, whereby an outcome can
vary systematically from one jurisdiction to the next. The proposed methods allow for the
consideration of all interaction effects up to any arbitrary level.

I accomplish this through recasting practical problems within a variable selection frame-
work. Every researcher has had to address the question of which variables to include in
a model. A host of questions are nearly always left unanswered: why no interactions, or
only the small number provided? Why no quadratic or cubic terms? The variable selection
literature strives to provide a rigorous, and data-driven, answer to this question. I focus pri-
marily on variable selection through the Least Absolute Selection and Shrinkage Operator,
or LASSO (Tibshirani, 1996).

The LASSO is a penalized regression method, where a linear model is fit subject to a
constraint on the sum of the absolute values of the parameters. As discussed below, this
has the desirable property of producing point estimates of precisely zero for most effects. In
practice, the method and its extensions have been shown to be a powerful means to identify
a meaningful subset of variables. The LASSO has generated a vast literature, across fields
from statistics and computer science to biology and public policy (Hesterberg et al., 2008).

Political scientists have been remarkably silent in this field. I introduce political scientists



to many of these insights, showing their utility, as well as extending the methods broadly
available.

While researchers often have some idea which variables to include, there may be concerns
over unmodeled nonlinearities (Wahba, 1990; Beck and Jackman, 1997; Keele, 2008). The
proposed methods allow for both smoothing and variable selection. By couching both sets of
methods, variable selection and smoothing, within a regularization framework, the means to
both model arbitrarily smooth curves while selecting from a set of variables becomes clear.
Linearity assumptions and variable inclusion concerns can both be greatly ameliorated within
this framework.

The dissertation consists of four chapters. This introductory chapter provides an overview
and addresses some of the theoretical concerns of such an approach. In common practice,
theory is used to generate a hypothesis of interest. An outcome of interest is assumed linear
in this variable, as well as a set of known predictors. The model is fit and a p-value is used to
test whether the null hypothesis of no effect can be rejected. Rather than assume a model,
the proposed methods selects a sparse model from a large set of possible models. The means
for doing so are developed in the first chapter.

The remainder of the dissertation consists of three papers. Each paper illustrates the
utility of variable selection in addressing questions of concern to political scientists. The
first paper considers problems of causal effects. The reporting of an average treatment effect
ignores causal heterogeneity: the treatment effect may vary importantly and systematically
across different subgroups. Considering causal heterogeneity as a variable selection problem
allows these interactions to be identified in a manner both useful and informative (Imai
and Strauss, 2011). When all subgroups are considered, the number of hypotheses may
approach or even outgrow the sample size. The proposed method identifies these effects in a
statistically rigorous manner, while considering many more hypotheses than current practice
allows.

The next two papers deal with problems of data-driven discovery. The first paper in this

section builds on the literature of identifying change points in time series (Calderia and Zorn,



1998; Spirling, 2007b). Rather than assume a linear model, I fit a model where the mean
function is a smooth curve in time. An algorithm for uncovering these change points, and
a modified BIC statistic that serves as a stopping rule, are both introduced. The proposed
method is applied to President George W. Bush’s approval data and to DW-NOMINATE
ideology scores.

The final paper extends the change point problem to its two-dimensional variant. Though
existing methods allow the testing of a single political boundary as a discontinuity (Keele
and Titiunik, 2011), the proposed method identifies effects that respect state boundaries. A
model additive in a smooth geographic component and a discontinuous state-specific effect
is fit. “Red” and “blue” states in the 2008 United States presidential race are identified, as
are high and low growth states in Africa, all while accounting for the smooth progression of
socioeconomic outcomes across a geography.

The proposed methods allow political scientists to consider a much broader array of vari-
ables and interactions than under current practice. By fitting large models, but returning
parsimonious results, the proposed methods can be used to identify effects even in the pres-
ence of hundreds or thousands of variables. Complex correlations with vote choice, coalition
duration, and onset of war can all be examined in a manner both statistically rigorous and
easy to interpret. The proposed methods make identifying normally unmodeled complexities
and nonlinearities in our data tractable, in a statistically rigorous manner. Since most of
the methods in this dissertation are new, or only passingly familiar, to political scientists,

the first chapter introduces some of the key concepts, both philosophicaily and statistically.

1.2 Causal Inference versus Data Driven Hypothesis Generation

Existing quantitative analyses work from the theory to the data. Broadly, a dependent
variable to be explained is selected. Theory, either existing or new, is used to develop an
explanation, and this explanation is operationalized as an independent variable. Possible
confounders are gathered. The outcome is written as a linear combination of the known
confounders and the explanatory variable of interest. After accounting for the confounders,

if the explanatory variable has an effect of sufficient magnitude and precision, producing a



p-value of below 0.1 or 0.05, the null hypothesis of no relationship is rejected. A relationship
between the independent variable and the outcome cannot be rejected, so the causal pathway
is considered significant.

The proposed methods reverse this relationship. Rather than begin with theory, I start
with the data to uncover unexpected relationships. Instead of testing the effect of some
pre-specified set of effects, I instead search for a small subset of predictors from a vast set of
variables. The criterion for variable inclusion changes dramatically, as does the interpretation

of the effects.
1.2.1 When P-values Fail

Assuming a null hypothesis of zero effect, p-values answer the question, “Within the
assumed model, what is the probability of seeing an estimate at least this extreme, if there
is in truth no systematic relationship between these variables?” If this p-value is sufficiently
small, in that it is not likely to see such an extreme value if the true relationship were simply
random noise, the estimate is deemed significant. The Bayesian critique of p-values is well
established (Cohen, 1994; Efron, 1986), but I offer a different critique here.

The nature of the critique is twofold. First, p-values cannot handle the case when there
are more hypotheses (k) than observations (n)— — — even though the covariates still contain
useful information. This insight is important in biostatistics, in which data often consist
of microarrays, and the number of covariates can be several times larger than the sample
size. Even though k£ > n, there is still information in the data that needs to be considered.
This lies at the crux of several critiques of inferential methods (Brady and Collier, 2004):
complex events such as revolutions and critical elections offer many more hypotheses than
observations. A model with all three-way interactions among ten variables will produce 176
variables, enough to swamp even a reasonably sized data set. In the situation when k is
larger than n, inferential methods fail, and these situations are not hard to find.

Second, and more relevant, as the number of k& grows relative to n, each individual
hypothesis is tested with less information. This is perhaps most clear in opposite terms. As

n grows relative to k, each hypothesis is estimated more precisely. Even when k < n, once
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Figure 1.1: A quantile plot of p-values for CATEs from a logistic regression and Bayesian
logistic regression, for the NSW data. The p-values are plotted against a uniform
distribution. If the p-values were informative, they would lie below the 45 degree line. The
p-values fall along this line, and are, as a group, indistinguishable from noise.

k reaches a certain point relative to n, simultaneous inference at a fixed false positive rate
grows uninformative (Benjamini and Hochberg, 1995).

Consider figure 1.1, which contains a plot of p-values from estimating the probability of
the National Supported Work Study recipients having a higher income after participation in
the program. If the true relationship were pure noise, among a set of variables of interest,
the p-values would be uniformly distributed. As a group, about 5% would be expected to

be less than .05, 10% less than 0.1, and so on. Some of the covariates would be statistically



significant, but not any more than what 1s to be expected under random noise The model
used to generate the p-values fit 79 variables to 722 observations, more than enough to be
comfortably identifiable Yet, the p-values for the 40 treatment effects are indistinguishable
from a umiform random variable Inference could be done some of the p-values are below
0 05, but the distribution of p-values does not generate much confidence in those results
A Bonferrom correction could be used, taking 05/40 as the critical value, at which point
nothing would be significant (for recent developments, see Benjamini and Hochberg, 1995)

In scenarios where p-values offer no guidance 1n vanable selection, current political
methodology 1s cast adnft It 1s precisely these scenarios that the proposed methods in
this dissertation address

1.2.2 Data-Driven Hypothesis Generation and Model Selection

Rather than inference within an assumed model, the proposed methods identify a sparse
models from within a broad class of models The fundamental tradeoff between model fit
and model complexity 1s central to all of the proposed methods A too-complex model will
overfit, performing poorly on data coming from the same generating process, a too-simple
model will underfit, missing systematic relationships that would aid i prediction The
approach balances fit on the observed data against model complexity, 1e the number of
selected variables The most complex sparse model that can be supported by the data 1s
returned The balance 1s captured i an objective function that 1s additive in emparical loss
(residual sum of squares, for example), and model complexity Reducing the empirical loss
requires an mcrease in model complexity, and the models are fit to balance this tradeoff

Rather than a p-value criterion, I use a predictive criterion The role of effective predic-
tion as central to positive social science has been long-established (Friedman, 1953, Maki,
2009) The predictive criterion used throughout the dissertation balances model size against
model fit Adding a new variable will never worsen model fit, but, adding a new variable
will increase model size The methods proposed here answer the following question “Would
adding this additional variable improve prediction on a different draw of this data?” Con-

sider, 1n the extreme, the case where there are as many linearly imndependent variables as



observations— — —the model fits the observed data perfectly; yet, on the next dataset, it
will perform quite poorly. Balancing this tradeoff between model fit and number of variables
(model dimensionality) lies at the heart of the proposed methods.

This predictive approach handles two different shortcomings of the inferential methods.
First, consider the case when k = n or £k > n. The extent to which the most highly
predictive variable reduces predictive error does not depend on how many other variables
are under consideration. If the variable increases prediction error at a rate faster than at
which it increases model dimensionality, it is included; else, it is not. Second, this increase
in predictive power is only loosely related to its p-value. A variable with a small p-value may
be substantively meaningless, but may be measured so precisely that it is deemed significant.
A variable that is not significant, due to correlation with many other variables, might be an
excellent predictor in the absence of some of its confounders.

Rather than testing covariates independently, the predictive criterion used through this
dissertation provide a means to identify a model in which most of the parameters are as-
sumed to be zero, balancing model fit against model size. The discovered variables may
be thought of in two separate manners. From a Bayesian perspective, the selected covari-
ates are Maximum a Posteriori estimates, assuming a Laplacian prior. From a likelihoodist
perspective, the selected covariates are Best Linear Unbiased Predictors. The uncovered
variables are not formally tested, in an inferential framework, but they are selected if they
have sufficient, explanatory power relative to their increase in model dimensionality. A more

formal description of these methods follow in section 1.4.

1.2.3 A Model Selection and Variable Selection Framework

Model selection and variable selection are central to data-driven hypothesis generation,
and a vast literature exists on this approach (Efron et al., 2004a; Breiman, 1996; Hastie
et al., 2001b; Shao, 1997). Let y, be an outcome variable of interest, + € {1,2,...,n}. Each
observation has a vector of k observed covariates, z,, and the problem is to characterize
E(y.|z,). Let ¢, and Z, denote unobserved draws from the same process that generated the

observed data. To guard against overfitting, the methods model F(#,|%,), as a function of
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Z,. The aim is to fit the next dataset as well as possible, as opposed to the observed data
in hand. To do this, a class of models is assumed, A, indexed by «, and denoted v,(x,).

Assuming squared loss, a prediction criterion is used to minimize over the class of models

argmin E ((§, — va(%,))?) (1.1)
acA

Powerful black-box predictors have been developed that make only very weak assumptions
about v, (Chipman et al., 2010; Breiman, 2001). This performs poorly, though, if the
goal is hypothesis generation. The fitted models handle arbitrary interactions, but give the
researcher little guidance as to what interactions are in place. Instead, the proposed methods
consider a subset of the model selection problem, that of variable selection. In this case,
we assume F(y,|z,) = z.6. If we assume that most of the elements of § are 0, the model
selection problem becomes one of variable selection. A then consists of all possible subsets
of predictors in z,, a set of size 2¥.

This is the approach taken throughout this dissertation. Each element of z, corresponds
with a hypothesis of interest to the researcher, and this set may be arbitrarily large. Variable
selection then is used to identify hypotheses that we would expect to have high external
validity. The application of model selection, variable selection, and data driven hypothesis
generation is discussed within the context of two common empirical frameworks, that of

likelihood based inference and the Neyman-Rubin-Holland causal model.

1.2.4 Model Misspecification as a Variable Selection Problem

A common, well-established manner of conducting inference is the likelihood approach. 1
summarize it briefly here to show where the proposed methods diverge from normal practice.
Maximum likelihood estimation is most common in scenarios where the outcome variable is
some limited dependent variable, such as a binary or a count variable. In these cases, the
outcome is not linear in a set of covariates because the fitted values may fall outside the range
of the dependent variable; fitted values may produce negative counts, or probabilities outside

[0, 1]. Instead, a scale is found such that some transformation of the linear model stays within
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the appropriate range. Intuitively, maximum likelihood estimators are the estimates that
are most likely to have generated the observed data. They come with a host of positive
attributes, described below.

More formally, consider an outcome variable v, i € {1,2,...,n}, which is assumed to
be a realization from some distribution, f(v,]6). 1 also assume f(y,|0) is in the exponential
family, which encompasses all distributions in common usage: the Normal, the Bernoulli,
the Poisson, the Negative Binomial, among others. This gives a joint distribution of the

outcome as

P(y1,yz,...,yn) = f(y17927~~-,yn|9) (12)

Rather than condition on 8, the observed data is conditioned on, and likelihood function,

L(-), is generated

L(9|y17y2a s ;yn) = f(y1)y27 o 7ynw) (13)

It is often easier to work with the log of the likelihood, {(-) = log L(-). The most likely

value of 6 to generate the observed data y is the mazimum likelihood estimator, Orirp.

éMLE‘ = arggnax l(91y1,y2, cees yn) (1-4)

The MLE possesses several desirable properties. First, it achieves the minimum asymp-
totic variance (Cramer-Rao lower bound); second, it is asymptotically normal; and third, it
possesses an invariance property, such that f/(g) mie = J (9MLE),

Given a k-dimensional vector of characteristics for each individual, z,, with corresponding

parameters (3, it is commonly assumed that the outcome of interest can be written as

E(y,) = n(x,8) (1.5)
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n(-) is a link function, transforming the values x'3 to the scale of y. For binary outcomes,
n(z.8) = m}(T;B); for count data, this becomes n(z;5) = exp(z,f); and for normally
distributed data, n(z,3) = z,5.

Regarding the broader argument, 1 focus primarily on the assumption in 1.2 and 1.5:
that the true model is linear in some set of observed covariates. Conditioning on 6 (or S,
in practice), makes two subtle assumptions. First, the researcher assumes that the outcome
is linear in observed covariates and that no others are necessary to characterize f(-). Issues
over unmodeled higher-order interactions and nonlinearities are assumed away. The proposed
methods address these concerns by including smoothers and a vast number of higher-order
terms, as appropriate.

Second, some subset of # is the hypothesis of primary interest. The method assumes
that the only relevant hypothesis is being considered by implicitly constraining all other
hypotheses to have effect zero— — —they are simply not included in the modeling process.
The effect of interest, though, may vary with other covariates in systematic, important,
and interesting ways, and these hypotheses are left unexplored. The proposed methods put
these hypotheses back in the modeling process, by considering a broad class of hypotheses,

uncovering those with the most explanatory power, and setting the remainder to zero.

1.2.5 Causal Heterogeneity as a Variable Selection Problem

Likelihood methods produce a systematic means to identify significant relationships be-
tween the outcome and an independent variable. The dominant framework for moving from
a correlative relationship to a causal claim is that of the Neyman-Rubin-Holland (NRH), or
potential outcomes, framework(Holland, 1986; Rubin, 1973, 1974, 1978). The NRH frame-
work has three main components. First, it is counterfactual in nature. Each observation has
a series of “potential outcomes,” the outcome that would occur under any given treatment.
Only one of these is observed, which is the “fundamental problem of causal inference.” The
researcher would much rather observe each unit receiving all treatments, but only one of
those worlds is actualized. Second, the treatment variable is manipulable and treatment as-

signment is random, so there is some positive probability put on each observation receiving
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each treatment. Finally, the assignment to treatment level is assumed independent of the
potential outcomes, conditional on observed covariates, so that the causal effects are not
polluted by selection bias or endogeneity.

I focus here on recasting the question of causal heterogeneity as a variable selection prob-
lem. While the average treatment effect (ATE) or average treatment effect on the treated
(ATT) are the most common estimands, unmodeled heterogeneity may be present. Condi-
tional average treatment effects (CATEs), where the treatment effect varies systematically
across subgroups of the data, are often left unmodeled. By characterizing a broad class of
CATEs, but placing them under a variable selection constraint, subtle interactions between
the treatment and recipient characteristics can be identified.

Consider a simple random sample of n observations from a population P. Within the
potential outcomes framework of causal inference (Holland, 1986), for each unit ¢, Y,(¢) to
denotes the potential value of the binary outcome that would be realized under the treatment
status T, = t. This notation relies upon the stable treatment unit value assumption; no
interference between units and no multiple version of the treatment. KEstimating causal
effects requires assuming strong ignorability of treatment assignment, where the treatment
level is assigned independent of potential outcomes (Rubin, 1990).

In addition, assume a treatment variable 7, is multi-valued and takes one of the (K + 1)
possible values from the set 7 = {0,1,..., K} where T, = 0 means that unit ¢ is assigned to
the control (reference) condition. Thus, the observed outcome variable Y, is equal to Y,(T,).
Finally, z, to denotes an M dimensional vector of observed pre-treatment covariates for unit
1 where the support of this random variable is denoted by X.

Given this setup, for each unit, the causal effect of the treatment condition 7, = ¢ (relative
to the control condition 7, = 0) as Y;(¢) — ¥,(0). The average treatment effect (ATE) is then

given by,
() = Pr(Yi(t) = 1) — Pr(¥;(0) = 1) (L6)

One commonly encountered problem related to treatment effect heterogeneity is to select

the most effective treatment among a large number of alternatives using the causal effect
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estimates from a finite sample. That is, identifying the treatment condition ¢ such that 7(¢t)
is the largest, i.e., t = argmax, . 7(t'). Researchers may also be interested in identifying
a subset of the treatments whose ATEs are positive. In both cases, conducting variable
selection is desirable in order to avoid subsetting the data, which may lead to inefficient
inference and multiple testing problems.

Another common challenge addressed is identifying subgroups of units for which a treat-
ment is most effective (or most harmful). In other words, one wishes to identify a subset of
pre-treatment covariates that efficiently characterize units to whom the treatment is most
beneficial. This problem can be understood as the problem of inferring the following condi-

tional average treatment effect (CATE) for a particular treatment condition ¢ € T,

;%) = Pr(Y,(t)=1]X, =) - Pr(Y,(0)=1| X, = &), (1.7)
for # € X where X’l is a subset of the observed pre-treatment covariates X,, and X is
its support. Since X, is typically of a large dimension, variable selection is desirable for
identifying a smaller subset of the pre-treatment covariates that are predictive of ATE.

1.3 Common Concerns with the Proposed Method, Addressed
1.3.1 Isn’t this just data mining?

Yes, though I do object to the word “just.” Many political scientists remain uncom-
fortable with using data to uncover, rather than simply test, relationships in data. It is
epistemically jarring at first, but in many ways, the proposed methods can be more honest
and more informative than commonly used methods. Concerns have been raised that these
methods are “atheoretic.” This is wrong on two counts. First, below, I describe the elegant
statistical theory underlying these problems. Estimates, with known asymptotic properties
are produced (Knight and Fu, 2000; Wahba, 1990; Bickel et al., 2006) . They are not “data-
dredging,” where differing models are fit until a p-value of 0.05 or less is generated. If, by
“atheoretic,” it is meant that no a priori theory linking individual behavior and observable
outcomes is used to justify each variable, then that is true, though this scenario is better

characterized as “pretheoretic.” The proposed methods search through a vast number of
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variables, when we do not have the resources or ability to test each on independent datasets.
Rather than asking whether a given hypothesis is significant, a large set of hypotheses can
be considered. There are more hypotheses in the data than are dreamt of by current theory.
These methods do not come without some losses, but the gains in terms of considering a
large number of variables and fitting models of a complexity well beyond that in common
practice are undeniable.

At their core, the methods presented here systematically evaluate complex models, re-
turning parsimonious results that are easily interpretable. I am not arguing that these
methods supplant traditional inference: quite the contrary. In situations where a clear hy-
pothesis derives directly from rigorous theory, a proper model can be characterized, and,
ideally, a field- or quasi-experimental dataset can be gathered, then the inferential frame-
work is certainly appropriate. The further from this ideal, though, the more appealing the
proposed methods become. 1 propose these methods where the researcher has a broad range
of variables, is agnostic over which may be the most important, and can explain either pos-

itive or negative significant estimates of any given parameter.’

Researchers often report
“unexpected” results, those that are significant in an unexpected direction, or significant
but were not anticipated by existing theory. The proposed methods provide a means to
search exhaustively for these unexpected effects. These scenarios call for discovery, rather
than inference. As our data grows in scope, size, and complexity, and the discipline moves

from data-poor to data-rich, these methods will only grow more applicable.

1.3.2 But economists don’t do it!

At conferences, two separate people have asked me if this method is yet prevalent in
economics. The short answer is, not yet; citations in the economics literature consist of a
single paper (Ferrari et al., 2009). Economics, as a field, has developed a rigorous, compre-
hensive statistical structure, sometimes independent of and sometimes in collaboration with
the statistics mainstream (for a fascinating exchange between the two fields, see Angrist

et al., 1996). It has suited the field well.

}Andrew Gelman has referred to these hypotheses as “vampiric® more than “empiric.”
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Instead of asking whether economists use these methods, I argue that political scientists
absolutely should. We have many questions of arbitrary complexity, where findings of either
deep complexity or deceptive simplicity could move the field forward. What correlates with
the onset of war? With vote choice? With levels of social welfare expenditure?

What doesn’t?

The proposed methods are within the mainstream of the “machine learning” commu-
nity, which is home to a cross-section of statisticians, computer scientists, biostatisticians,
industrial engineers, electrical engineers, demographers, mathematicians, business scholars,
and sociologists. The community, and its corpus, is better suited to prediction rather than
causal inference, though one of the proposed methods begins the work of linking the two
more formally. Economists are notably poorly represented in this community, and it is well
beyond the scope of this dissertation to hypothesize as to why (but see Ziliak and McCloskey,
2007). The research produced in this subfield, fitting high-dimensional models to finite data,
is a vibrant, active area (for an overview, see Fan and Lv, 2009), and political science can
only benefit from participating.

1.3.3 1Is this inference?

No, this is not inference. Discovered results are not significant, in the normal sense. They
are powerful predictors.

This has led me to refer to variable selection in this field as hypothesis generation. Rather
than test simple, or obvious, hypotheses with data, the methods suggest complex hypotheses.
An additional dataset, or different mode of inquiry, is necessary to establish each variable’s

relevance.

1.3.4 What is lost through using these methods?

The greatest loss is that of stepping outside the inferential framework. A hypothesis is
generated, rather than tested; these analyses are more likely to start, rather than finish, a line
of research. This should not be discounted. If a proper hypothesis, with expectations over

the direction of its effect, can be produced from rigorous first principles, then the inferential
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framework should be used. The methods introduced in this dissertation will only confuse
the picture.

Second, these methods are relatively new and therefore under theoretical development.
There is very little left to say about simple likelihood methods, such as logistic regression.
The methods introduced here are an active theoretical field. It was only recently shown that
the LASSO estimator is asymptotically biased (Knight and Fu, 2000). This bias generates
some unexplained, yet systematic, variance, leading to the selection of improper variables
that correlate with the true variables with some positive probability. In practice, LASSO
estimates commonly select a non-negligible number of tiny effects. Methods that avoid this,
through possessing the Oracle Property (where the estimator selects the true model with
probability one as sample size grows), are multivariate versions of Hodges’ estimator, and
improve on the Cramer-Rao lower bound at the cost of achieving maximal risk near the
variable acceptance threshold (Leeb and Potscher, 2008). Machine learning methods are not
as developed as more common likelihood methods, and many questions are areas of active

research.

1.4 Regularization Methods

The previous sections provided a light overview of the proposed methods, and their
statistical and theoretical underpinnings. This section begins the more formal explication.
Throughout this section, there is assumed an observed dependent variable for each ob-
servation, v, f(w.|B), a vector of k covariates, z, and corresponding parameters 5. The
log-likelihood of f(-) is denoted [(-), and the empirical loss is denoted as J(53).

Each of these questions is addressed through recasting the estimation problem as one
of “regularization.” Political scientists are familiar with likelihood based methods, which
minimize some form of empirical loss: least squares, logistic loss for binary outcomes, or log
loss for count data. Regularization methods are a generalization of these methods, where a
“penalty” is added onto the likelihood, in order to produce output with desirable properties.

As an example familiar to political scientists, consider the AIC statistic, of the form
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AIC(B) = —2-1(B) + 2 - dim(B) (1.8)

A researcher intent on maximizing the log-likelihood could simply add as many linearly
independent covariates as observations, producing a likelihood of one. This, of course, overfits
the data and generalizes poorly. To guard against this, the empirical loss, captured by the
log likelihood, is constrained, such that increases in the likelihood due to expanding the
parameter space are offset by the size of the model (dim(3)). The 2 in this statistic balances
the tradeoff between model size and model fit. Different choices exist; a researcher could
simply replace 2 with log(n), and arrive at the BIC statistic. The basic insight carries
through to all of the methods introduced in this dissertation: model fit should be balanced
against model size. Formulating this tradeoff is the hallmark of regularization methods.

Rather than constraints of the form dim(f), the proposed dissertation will focus on
two different constraints. The first, the Least Absolute Selection and Shrinkage Operator
(LASSO), produces point estimates of zero for most covariates (Tibshirani 1996). If political
scientists want to consider hundreds, or even thousands, of covariates, the LASSO constraint
provides a mean for selecting among them simultaneously. The LASSO has gained great trac-
tion across disciplines, from biology, where genes far outnumber the number of observations,
to industrial engineering, as a means of signal processing (Hesterberg et al., 2008). Political
science will benefit from considering these innovations: a vote equation, or predictor of war
or economic growth, can be fit that includes a near-arbitrary number of covariates.?

The second constraint allows for straightforward extensions to nonparametric smoothers.
Smoothing splines have long been cast as a regularization method, where a set of smooth basis
functions (covariates) are introduced, but a constraint is placed to balance the “curviness” of
the resultant fit. This dissertation presents variable selection and smoothing under a single,
regularization framework. This allows a means to select among some variables, and smooth

among others, as the researcher’s question dictates.

“The asymptotic results vary with whether or not the number of covariates grows in sample size (Shao,
1997).
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Regularization methods require solving a constrained optimization, additive in an empir-

ical loss and a positive semi-definite “penalty,” of the form

B = argmang i@ + \))_/ - Q(PB) (1.9)

S
Empirical loss moothing Parameter pepaity

Regularization methods correspond with maximum a posteriori estimates, and, in less
Bayesian language, these estimators are known to be minimizers of E(I(5))(Vapnik, 2000;
Scholkopf and Smola, 2001). To explain these methods, and how I use them in the proposed
dissertation, I break the explanation into three components, for the loss function, penalty,
and tuning parameter.

1.4.0.1 Loss Functions

The loss functions used in regularization methods are the most familiar to political sci-
entists. The loss function is, often, a negative log-likelihood, characterizing the distance
between the model and the data. For least squares regression, squared loss is used, but
different losses may be used depending on the nature of the data generating process. The

most commonly used loss functions are

n

Squared Loss: Z@l —zB)% yeR (1.10)
=1
Absolute Deviation: i ly, — 2B, y € R (1.11)
=1
Log Loss: zn:ylx;ﬁ —exp(z.8); y €N (1.12)
=1
Logistic Loss: zn:log{l +exp(yz.8)}; v € {£1} (1.13)
=1
Hinge Loss: imax(l —yz,3,0); y € {£1} (1.14)

1=1

(1.15)
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With the exception of the hinge loss, an optimal classifier studied in chapter 2, the first
four losses should be familiar as negative log likelihoods in a standard maximum likelihood
framework. Rather than simply minimize the empirical loss, as ML methods do, the estima-

tors are constrained via the penalty term.

1.4.0.2 Variable Selection with the LASSO

The most commonly used variable selection method is a cross between expertise and
common sense: only “relevant” variables are included, main effects are favored, and interac-
tions or higher-order terms are only included if a strong case can be made for their inclusion.
Standard data-driven variable selection methods include sequential selection methods (for-
wards, backwards, stagewise) and best subset methods. Sequential methods perform poorly,
since a poor initial step can lead to undesirable selection afterwards. “Best subset methods”
consist of evaluating all possible subsets, subject to a criterion such as Cp, AIC, or BIC.
These methods underperform, since each covariate is either included in the model or not,
when, a preferable model (in terms of lower prediction error, higher posterior probability, or
higher penalized likelihood) would include a shrunken estimate.

Variable selection has recently been recast within a regularization framework as a penal-
ized likelihood. In a seminal paper, Robert Tibshirani proposed the Least Angle Selection
and Shrinkage Operator, or LASSO (Tibshirani, 1996). With y and z, standardized, the

LASSO estimator is defined as the solution to the minimization problem:

n k
pEA950 = arg min S =8 +1> 16 (1.16)
1=1

7=1

The constraint sets some of the variables to zero, with A = 0 giving the least squares
solution and Ay — oo returns B rasso = 0. The algebraic intuition is most apparent within
the context of an orthogonal design (i.e. X’X is proportional to the identity matrix). Let

f3° be the least-squares estimates of 8 and (z)* denote - I(z > 0). In an orthogonal design,
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the LASSO estimator can be written (see Tibshirani 1996: 269):
v\t
B]LASSO _ A; (1 _ M > (1.17)
1671

The LASSO estimator shrinks least squares estimates greater than A, towards zero by

factor 1 — Ay/ ]B;I Covariates with least squares estimates less than \; are estimated as
zero. For non-orthogonal design, the LASSO solution proves intractable, since the penalty
Zle |6,] is not differentiable at 3, = 0, although the general insights provided by the
orthogonal case carries through.

In a likelihood framework, the method can be motivated out of sheer usefulness; in fact,
recent algorithmic advances allow for rapid fitting with k£ > n at the computational expense
of only k least squares estimates (Efron et al., 2004b). The method may also be motivated
as the posterior mode, with a Laplacian prior placed over 3; see Park and Casella (2008) for
a fully Bayesian treatment.

The LASSO carries an informative geometric interpretation. LASSO regularization can
be viewed as placing a constraint on a likelihood, with a solution where the hyperellipse
log—likelihood = k is tangent to the constraint. The standard form of the LASSO estimator,

and a corresponding smoothed estimator,® is given below:

n k
BLASSO argmﬁin Z(y’ — 2/ 8)? subject to Z 13| < qrasso (1.18)
=1 ]_1
pemeoth — arg mmz — z!3)* subject to Z 32 < Gamooth (1.19)
71=1

The geometric interpretation is made clear in figure 1.2. Consider the case with only two
coefficients, B, and f. In this case, the ridge constraint is the circle 57 + 32 = ky. The
LASSO constraint, in contrast, is the square |8;|+ |S2| = k;. The confidence (Scheffe) ellipse

is centered at the unconstrained estimate (Bh Bg), and its shape is governed by cov(Bl, 32)

3This is the constraint used in random effects models, smoothing splines, ridge regression, or through
assuming a normal prior over the coefficients. The resulting estimates differ in interpretation, based off
whether 3 is assumed random or fixed, but the optimization is the same.
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Figure 1.2: A comparison of the ridge and LASSO constraints. The LASSO constraint
produces point estimates of zero, by generating point estimates at where the diamond is
tangent to the ellipse.

For a given value of k; or ks, the minimizer to the loss function occurs where the confidence
(Scheffe) ellipse is tangent to the constraint. The ellipse will hit the smoothing constraint
at a point where neither coefficient is zero. The ellipse, though, is likely to hit the square
at a corner, setting some of the estimates to zero. In practice, the LASSO estimator is a

powerful variable selection mechanism.

1.4.0.3 Smoothing Splines and Regularization

Often, the researcher does not know a precise functional form for the target function. It
may be known to be some function of a observed variable, but little may be known about
whether the effect is linear, quadratic, cubic, and so on, in the observed data. To handle this
uncertainty, this dissertation accounts for the smoothness through the use of the popular
nonparametric method of smoothing splines (Wahba, 1990; Gu, 2002; Shawe-Taylor and
Cristianini, 2004).

In the simplest spline model, pairs of observations (v,,t,) are observed, with ¢, having
support 7. It is assumed that the systematic component of y, is additive in a linear and a

smooth component, n(¢,). The smooth component is assumed twice differentiable function,
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with [ (n"(t))?dt < co. This produces a model for y, of the form
Y, = do + dat, +(t.) + €, (1.20)

The celebrated Representor Theorem of Kimeldorf and Wahba (1971) shows that the
population minimizer of the form E((y, — 4,)%|t) can be written as § = Ré& 4 Sd, for n x 1
vector ¢ and 2 x 1 vector d. R is an n x n matrix purely determined by ¢ and assumptions
about the nature of n, while S is a low-dimensional matrix, generally linear in ¢. Columns in
R are a series of smooth basis functions, a type of Fourier transform. Columns in S consist
of an intercept and linear term for ¢; R is constructed so that it is uncorrelated with S. R
is the penalized component, parameterizing the smooth curve, while S is the unpenalized

component. With known R and S, the problem reduces to a problem of the following form:

{¢ss, cisg} = argmin.y (y — Rc — Sd)'(y — Rc — Sd) + M\ac'Re (1.21)

Since R is an n x n matrix, the problem has more parameters (n + 2) than observations
(n), necessitating the regularization. The level of regularization, or, in this case, smoothing,
is controlled by the parameter A;. For Ay = 0, the fitted values are a complete interpolation
of the data. For Ay — oo, the fitted values approach the least squares line from regressing y
onto S, which spans the unpenalized space. Selecting Ay controls the balance between these
two extremes. The coefficients in ¢ are penalized, while those in d are not.

1.4.0.4 Tuning Parameter Selection

Several of the methods used here require the selection of multiple tuning parameters. To
accomplish this,a GCV statistic is calculated at each fixed value of {Ay, Ao} (Wahba, 1990),
in order to balance model fit against model dimensionality. Given a sample size of n and

model dimensionality of k, the GCV statistic is

1 nA z_x;62
Gﬂ@m:nzﬁgﬁy )

(1.22)
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GCV statistics are known to be inconsistent for model selection, when the model space
is finite(Shao, 1997). To adjust the GCV to variable selection, I propose a Bayesian GCV
(BGCV) statistic of the form

% Z?:l(yl - 37;5)2
1
(1 . 092(n) . %)2

BGCVy, 5, =

(1.23)

I use the GCV when the primary problem is that of prediction. In this case, “false
discoveries” are less troublesome, so long as they add some predictive power. When the goal
is optimal variable selection, I use the BGCV. Simulations show similar results for GCV
for BGCV, similar to differences between AIC and BIC statistics for model identification,
but, as expected from theory, GCV performs slightly better on prediction, and BIC produces
slightly fewer false discoveries. While I acknowledge the ad hoc nature of the BGCV statistic
(for a similar use of this statistic, see Shi et al., 2006), I find that it maintains a reasonable

discovery rate and a low false discovery rate in both simulation and practice.

1.4.0.5 Search Strategy

The search strategy consists of a series of alternating line searches. First, A; is fixed at
a large value, (exp(25)). Next, A is evaluated along the set log(A\y) € {—15,—14,...,10},
with the value producing the smallest GCV statistic selected. Given the current estimate of
Av, Az is evaluated along the set log(Ay) € {—15,—14,...,10}, and the Ay that produces the
smallest GCV statistic is selected. We alternate in a line search between the two parameters
to convergence at a given precision. After convergence at a given precision, the radius is

decreased, and the precision increased. The process is repeated to a precision of .0001.

1.5 Conclusion: The Proposed Methods

Within a regularization framework, each of the proposed methods can be described rather
concisely. The second chapter recasts causal heterogeneity as a variable selection problem,
through the use of two LASSO constraints. One constraint is placed over pre-treatment
covariates and another over the causal heterogeneity parameters of interest. This allows

for small effects to be selected, even in the presence of known large effects. The third
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chapter concerns the changepoint problem, where the mean function is characterized as a
smooth curve with some small number of discrete breaks. A method for identifying the
breakpoints, and a BIC statistic as a stopping rule is introduced. The fourth chapter is the
two-dimensional version of the previous chapter. A smooth curve is fit to two dimensional
data, and a series of jurisdiction-specific effects are selected with a LASSO constraint. The
“mixed-penalty” method combines a LASSO constraint and a smoothing spline constraint.

The regularization framework discussed in this introduction allows for the fitting of com-
plex models, and the LASSO constraints are used to tame the results to a reasonable number.
By using the data to generate, rather than test hypotheses, a subset of predictive effects from
a much larger set of possible variables can be selected, even in the presence of nonlinearities.
Identifying these effects allows insight into political processes and outcomes that would not

be amenable to study otherwise.
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Chapter 2

Identifying Treatment Effect Heterogeneity through Op-
timal Classification and Variable Selection

2.1 Introduction

While much research in the causal inference literature has focused upon the overall av-
erage treatment effect, the identification of treatment effect heterogeneity plays an essential
role in a number of situations that are commonly encountered by applied researchers.! For
example, ascertaining subpopulations for which a treatment is most beneficial (or harmful)
is an important goal of many clinical trials. However, the most commonly used method,
subgroup analysis, is often inappropriate and remains as one of the most debated practices
in the medical research community (see e.g., Assmann et al., 2000; Rothwell, 2005; Lagakos,
2006).

Identification of treatment effect heterogeneity is also important for numerous other pur-
poses. They include (1) selecting the most effective treatment among a large number of
available treatments, (2) designing optimal treatment regimes for each individual or a group
of individuals (e.g., Manski, 2004; Pineau et al., 2007; Moodie et al., 2009; Imai and Strauss,
2011), (3) testing the existence of heterogenous treatment effects (e.g., Gail and Simon,
1985; Davison, 1992; Crump et al., 2008), and (4) generalizing causal effect estimates ob-
tained from an experimental sample to a target population (e.g., Frangakis, 2009; Cole and

Stuart, 2010; Hartman et al., 2010; Green and Kern, 2010b; Stuart et al., 2011). In all of

1This chapter is joint work with Kosuke Imai, Department of Politics, Princeton University.
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these cases, researchers must infer how treatment effects vary across individual units with
different characteristics and/or how causal effects differ across various treatments.

In this paper, we propose a method that combines optimal classification with variable
selection to identify heterogeneous treatment effects when the outcome is binary. Recently,
some scholars have pointed out that identification of treatment effect heterogeneity can be
considered as a variable selection problem (Gunter et al., 2011; Imai and Strauss, 2011).
Building on this insight, Section 4.3.1 introduces the Support Vector Machine (SVM) with a
separate LASSO constraint for the causal heterogeneity parameters of interest. This differs
from the standard setup where a single regularization constraint is applied to all model
parameters. The use of two separate LASSO constraints ensures that variable selection
is performed separately for variables representing alternative treatments and/or treatment-
covariate interactions. Not only are these variables different qualitatively from other variables
in the model (e.g., pre-treatment covariates), but they often have relatively weaker predictive
power. The proposed model avoids the ad-hoc variable selection of existing procedures
by automating everything in one step (e.g., Gunter et al., 2011; Imai and Strauss, 2011).
The model also directly incorporates sampling weights, which are particularly useful when
generalizing the causal effects estimates obtained from an experimental sample to a target
population. This single step procedure contrasts with the multi-step procedures proposed in
the literature (e.g., Hartman et al., 2010; Green and Kern, 2010b; Stuart et al., 2011).

To efficiently fit the proposed model with multiple regularization constraints, we develop
an alternating line search algorithm that avoids the use of grid search, cross validation,
or matrix inversion. This makes the proposed methodology more computationally efficient
relative to the commonly used methods for identification of treatment effect heterogeneity
such as Boosting (Freund and Schapire, 1999; LeBlanc and Kooperberg, 2010) and Bayesian
Additive Regression Trees (BART) (Chipman et al., 2010; Green and Kern, 2010a).

Another key advantage of the proposed methodology over Boosting and BART is that it
produces a parsimonious model with a fewer number of parameters and therefore the model

output can be more easily interpreted. Our model is most similar to the Bayesian logistic
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regression with a non-informative prior (Gelman et al., 2008). But, we use an SVM loss with
two LASSO constraints rather than the logistic loss with a single Cauchy prior. This means
that many of our model parameters are estimated to be zero rather than shrunk towards
zero, thereby producing a parsimonious model.

To evaluate the performance of the proposed methodology, we conduct a set of simula-
tion studies to compare it with some of the commonly used alternative methods including
Boosting, BART, and Bayesian logistic regression with a non-informative prior. Our simu-
lation studies examine the performance of the proposed method in terms of identifying how
treatment effects differ across multiple treatments and how the causal effect of a treatment
varies across individuals with different characteristics. As shown in Section 2.3, the results
indicate that the proposed method has lower false discovery rate than the competing meth-
ods. In addition, we find that the proposed method mostly has a comparable discovery rate
and competitive predictive properties to these commonly used alternatives.

For empirical illustration, we apply the proposed method to two well-known random-
ized field experiments from the social sciences. The results of our analysis are presented in
Section 2.4. First, we analyze a get-out-the-vote field experiment where voters were ran-
domly assigned to approximately 280 combinations, with three different appeals (civic duty,
neighborhood solidarity, close election) through one of three different mobilization strategies
(phone call, personal visits, and post cards) in order to ascertain their causal effects on
voter turnout (Gerber and Green, 2000). We apply the proposed methodology to identify
a certain combination of appeal mobilization strategies that can most effectively increase
turnout. Such an analysis may help campaign managers choose the most effective mobiliza-
tion strategy among a large number of possible strategies.

Second, we apply the proposed methodology to the experimental data from the National
Supported Work Demonstration (NSW), which is a temporary employment program designed
to help disadvantaged workers (Lalonde, 1986). The qualified workers who were assigned
to the treatment group received all the benefits of the NSW program (e.g., job training and

counseling). In this application, we use the proposed method to identify the groups of workers
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who benefit most from the NSW program in terms of raising workers’ wages. Furthermore,
we show how our method can be used to generalize the causal effect estimates obtained from
an experimental sample to a target population. Such an analysis helps answer the question
of what impacts policy makers should expect if they were to implement the NSW program
in a broader population.

Finally, Section 2.5 offers concluding remarks to summarize the contributions of the

proposed methodology.
2.2 The Proposed Methodology

In this section, we describe the proposed methodology by presenting the model and
developing an estimation algorithm to fit the model. We begin by formalizing the problem

of identifying treatment effect heterogeneity.

2.2.1 The Framework

Consider a simple random sample of n observations from a population P. Note that
this population may not correspond directly to the target population of inference, which we
denote by P*. Within the potential outcomes framework of causal inference (Holland, 1986),
for each unit i, we use Y,(t) € {—1,1} to denote the potential value of the binary outcome
that would be realized under the treatment status 7, = ¢. This notation relies upon the stable
treatment unit value assumption; no interference between units and no multiple version of
the treatment (Rubin, 1990). In addition, we assume that the treatment variable 7T, is multi-
valued and takes one of the (K + 1) possible values from the set 7 = {0,1,..., K} where
T, = 0 means that unit 7 is assigned to the control (reference) condition. Thus, the observed
outcome variable Y, is equal to Y,(T;). Finally, we use X, to denote an M dimensional vector
of observed pre-treatment covariates for unit ¢ where the support of this random variable is
denoted by X.

Given this setup, for each unit, we can define the causal effect of the treatment condition

T, = t (relative to the control condition T, = 0) as Y,(¢) — ¥,(0). The average treatment
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effect (ATE) is then given by,
7(t) = Pr(Y,(t)=1)—Pr(¥,(0) =1). (2.1)

One commonly encountered problem related to treatment effect heterogeneity is to select
the most effective treatment among a large number of alternatives using the causal effect
estimates from a finite sample. That is, we wish to identify the treatment condition ¢ such
that 7(¢) is the largest, i.e., ¢ = argmax, ., 7(¢'). Researchers may also be interested in
identifying a subset of the treatments whose ATEs are positive. In both cases, conducting
variable selection is desirable in order to avoid subsetting the data, which may lead to
inefficient inference and multiple testing problems.

Another common challenge we address in this paper is to identify subgroups of units for
which a treatment is most effective (or most harmful). In other words, one wishes to identify
a subset of pre-treatment covariates that efficiently characterize units to whom the treatment
is most beneficial. This problem can be understood as the problem of inferring the following

conditional average treatment effect (CATE) for a particular treatment condition ¢ € T,

;%) = PrV,()=1|X,=%) —Pr(Y,(0) =1 | X, = &), (2.2)
for # € X where )?l is a subset of the observed pre-treatment covariates X,, and X is
its support. Since X, is typically of a large dimension, variable selection is desirable for
identifying a smaller subset of the pre-treatment covariates that are predictive of ATE.

We next turn to the description of the proposed model that combines optimal classifi-
cation and variable selection to identify treatment effect heterogeneity. For the remainder
of the paper, we assume the strong ignorability of treatment assignment (Rosenbaum and

Rubin, 1983),
(YA0)Yi(1),. . Yi(K)} UL T.|X,=z and 0<PT,=t|X,=2)<1 (23)

for all t € T and z € X. This assumption is guaranteed to hold in randomized experiments

and is also common when estimating causal effects in observational studies. Under this



31

assumption, equations (2.1) and (2.2) reduce to the following,

() = Pr(Yo=1|T, =)= Pr(Y, = 1| T, = 0) (2.4)

%) = Pr(Y,=1|T,=t,X =3)—Pr(Y,=1|T,=0,X = %), (2.5)

respectively. Thus, as shown below, we use optimal classification and variable selection

within the context of regression modeling.

2.2.2 The Model

In modeling treatment effect heterogeneity, we begin by considering the following linear

classification rule for the binary outcome variable Y,

& = sen(V) (2.6)
Y, = (a+Z[B+V%) (2.7)

where 7, is an Lz dimensional vector of covariates that represent treatment effect hetero-
geneity and V, is an Ly dimensional vector containing the rest of the covariates in the model.
For example, if researchers wish to identify the most efficacious treatment condition among
all the possible treatments, then Z, would consist of (X +1) indicator variables, each of which
represents a different treatment or control condition whereas V, would include pre-treatment
variables that need to be adjusted for within the model. Similarly, if identifying subgroups
of units for which a treatment is most beneficial (or harmful), Z, would include variables
representing interactions between the treatment indicator variable and all the pre-treatment
covariates of interest. In this case, V, would include all the main effects with respect to the
pre-treatment covariates. The idea here is to separate the causal heterogeneity variables of
interest from the rest of the variables.

In estimating the coefficients, 8 and ~, we adapt the support vector machine classifier
(SVM) and place separate LASSO constraints over each set of coefficients (Vapnik, 1995;
Tibshirani, 1996; Bradley and Mangasarian, 1998; Zhang, 2006). Our model differs from the
standard model by allowing 8 and v to have separate LASSO constraints. This is motivated
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by the qualitative difference between the two sets of parameters, and also by the fact that

often causal heterogeneity variables have weaker predictive power than other variables.
Specifically, define the “hinge-loss” function as |z|y = maz(z,0). We formulate the

support vector machine as a penalized squared hinge-loss objective function (Wahba, 2002),

with two separate [; constraints to generate sparsity in the covariates,

n Lz Ly
w1 =Y (4 ZTBHVINE A2 D 181+ Av Yyl (2.8)
=1 1=1 7=1

where Az and Ay are separate LASSO penalty parameters for § and ~y, respectively, and w,
is an optional sampling weight, which may be used when generalizing the results obtained
from one sample to a target population.

Our objective function is similar to several existing LASSO variants but there exist
important differences. For example, the elastic net introduced by Zou and Hastie (2005)
places the same set of covariates under both a LASSO and ridge constraint to help reduce
mis-selections among correlated covariates. In addition, the group LASSO introduced by
Yuan and Lin (2006) groups different levels of the same factor together so that all of a factor
is selected, rather than particular levels and rotational invariance is preserved. In contrast,
the proposed method places separate LASSO constraints on the qualitatively distinct groups
of variables so that variable selection is performed among causal heterogeneity parameters

of interest.

2.2.3 The Estimation Algorithm

The estimation algorithm progresses in three steps: the data are rescaled, the model is fit
for a given value of Az and Ay, and each fit is evaluated using a generalized cross validation

statistic.
2.2.3.1 Rescaling the Covariates
LASSO regularization requires rescaling covariates (Tibshirani 1996). Following standard

practice, all pre-treatment main effects are centered and given standard deviation one. Higher

order terms are interactions between the lower-order standardized terms.
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We model two different forms of causal heterogeneity. In the first, treatments consist of
multiple crossed factors, where each individual receives exactly one level of several different
factors. For example, there may be three different treatments, with four treatment conditions
each. The main treatment effects consist of the twelve columns of indicator variables (three
times four). Each of these columns is left uncentered, keeping most of their entries to
zero, but given standard deviation one. Interaction treatment effects are constructed as the
product of these lower order terms.

The second form of causal heterogeneity we consider is that of a single treatment in-
teracted with multiple pre-treatment covariates, in order to ascertain for which subgroups
a treatment is most efficacious. In this case, standardization occurs in three steps. First,
the pre-treatment covariates is standardized, but left uncentered. The uncentered, stan-
dardized treatment indicator is then interacted with the pre-treatment covariates. Fach
treatment /pre-treatment covariate interaction covariates is then centered on the treated
units, and the untreated observations are set to zero.

2.2.4 Fitting the Support Vector Machine

The support vector machine is estimated through a series of iterated LASSO fits, using
two simple observations. First, for a given outcome Y, € {£1}, [1-Y,V;|2 = (Y, -Y;)?-1(1 >
Y;Yz), which allows the SVM to be written as a least squares problem on a subset of the
data. Second, for a given value of {A\z, Ay}, rescaling Z and V' allows the objective function

to be written as a LASSO problem, with a tuning parameter of 1, as

sz Yo (n+2/6+V,'y )|++)\ZZWJ|+/\VZ'%|— (2.9)
7=1 71=1

Z w,- Y, — (ot A—ZT(Azﬁ) T —vwm D2+ Z AzBy| + Z Avwl (210
1=1 7=1

These two observations allow the problem to be coerced into a form that can be fit

by an efficient LASSO algorithm (Efron et al., 2004b). The algorithm alternates between
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estimating a model on the subset of observations {i|1 > Ylf/l}, and then re-estimating this
set of active observations. We describe the algorithm in greater detail immediately below.

To begin the algorithm, a value of {Az, A\y) is selected. The data consist of a binary
outcome Y, € {£1}, ¢ € {1,2,...n}, an n x Lz matrix of causal heterogeneity covariates
Z with associated parameters 3, and an n x Ly matrix of pre-treatment covariates V' with
associated parameters +. Initialize the coefficients and fitted values [BSZI&EV] =0, i =0,
and Y0 = 0 ;.

Let A® denote the set of all active observations at iteration ¢, the set for which {i|1 >
Ylffl(t—l)}. This is the set of observations to which the LASSO model is fit. Initialize A° =
{i]1 > Y,¥,%}, which, by construction, is all observations at initialization. Let X 4 denote
the submatrix of the n x k£ matrix X, consisting of all rows of X that are in A®; let X denote

the matrix X with columns centered. The algorithm progresses in six steps:

1. Generate the submatrices for the design matrix and outcome as

1 1
ZV(t) - I::\;*ZA(t—l) EVA(t—l):' (211)
y® = Y 46— (2.12)

2. Estimate the LASSO coefhicients as

Ly Ly

. . Y

[BAlzasso = argmin > (VO = ZV, B2+ D181+ D 1yl (2.13)
(Bl 1EA-T) 1=1 7=1

3. Update [f®}50] = 1. [BE-D|50-1] 4 :- [B14]L.asso

4. Update the intercept as the difference in means between Y and the fitted values, with

respect to the active observations as

p =¥O _{Zzve[p0|50]) (2.14)
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5. Calculate the current fitted values for all observations as

o R I B LAV
Yz(t) e 1:)\Z l Av } [ﬁ(t)h(t)] (219
6. Update the active set as A® = {i|1 > }Z)Az(t))

For a fixed value of {Az, Ay}, steps (1)-(6) are iterated to convergence. The coefficients

[4]8] are rescaled at the end to their original scale.

2.2.5 External criterion

The algorithm produces coeflicient estimates for a given value of {Az, Ay }. This section
describes both the statistic we use to assess fit, as well as the search strategy implemented
to identify the tuning parameters.

2.2.5.1 External Criterion

At each fixed value of {A\z, Ay}, we calculate a GCV statistic (Wahba, 1990), in order

to balance model fit against model dimensionality. Define n as the sample size, ng as the

. . . ~ ~ t
sample size of observations in A at convergence, and Y, as Y;( )

at convergence. The number
of non-zero coefficients provides an unbiased estimate of the dimensionality of a LASSO

model (Zou et al., 2007), so we take as our criterioin the GCV statistic

2 1YY
n La=1 vl 4
GCVY7)>§>‘Z,)\V == (1 — ﬁ)Q

7o

(2.16)

2.2.5.2 Search Strategy

Our search strategy consists of a series of alternating line searches. First, we fix Az at a
large value, (exp(25)), effectively setting all causal heterogeneity parameters to zero (Osborn,
Presnell, and Turlach). Next, Ay is evaluated along the set log(Ay) € {—15,—14,...,10},
with the value producing the smallest GCV statistic selected. Given the current estimate of

Av, Az is evaluated along the set log(A\y) € {—15,—~14,...,10}, and the Ay that produces the
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smallest GCV statistic is selected. We alternate in a line search between the two parameters
to convergence at a given precision. After convergence at a given precision, the radius is
decreased, and the precision increased. The process is repeated to a precision of .0001.

2.3 Simulation Studies

In this section, we conduct two simulation studies to evaluate the performance of the
proposed method relative to the commonly used alternatives: Boosting (adaboost as imple-
mented in R package ada), BART (as implemented in R package bayestree), and Bayesian
logistic regression with a non-informative prior (as implemented in R package arm). The
first set of simulations corresponds to the situation where researchers are interested in se-
lecting the most effective treatment among a large number of possible treatments. The
second set of simulations considers the case where we wish to identify subpopulation of
units for which a treatment is most effective. In both cases, we assume that the treatment
variable T, is independent of the observed pre-treatment covariates X,. This assumption
holds in randomized experiments or in certain observational data where covariate balance is
achieved via matching or other procedures. Finally, we examine four different sample sizes,
n € {500, 1000, 2500, 5000}, in both sets of simulations. For each scenario, we run 1000

simulations.

2.3.1 Identifying the Best Treatment

We begin by presenting the simulation results for selecting the best treatment among a
large number of available treatments. We use two settings, one with correct model specifi-
cation and the other with misspecified models, where unmodeled nonlinear terms are added
to the data generating process.

In the simulations with correct model specification, we have one control condition, forty-
nine additional distinct treatment conditions, and three pre-treatment covariates. Using our
notation, this means that Z, consists of fifty treatment indicator variables and V, represents a
vector of three pre-treatment covariates plus an intercept, i.e., Ly = 49 and Ly = 4. Among

the forty-nine treatments, three of them have substantive average effects whose magnitude
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is approximately equal to 7, 5, and —3 percentage points, respectively. The remaining 46
treatment indicator variables have non-zero but negligible average effects where effect sizes
are within +1 percentage point. All pre-treatment covariates, on the other hand, are assumed
to have substantive predictive power.

We independently sample the pre-treatment covariates from a multivariate normal dis-
tribution with mean zero and a randomly generated covariance matrix. Specifically, an
Ly x Ly matrix, U = [u,], was generated with /u,, ~ norm(0,1) and the covariance
matrix is given by U TU. The design matrix for the forty nine treatment variables is orthog-
onal and balanced. The true values of the coefficients are set as 8 = {7.5,3.3,—2,...} and
v = {50, —30,30} where the “...” denotes 47 remaining coefficients drawn from a uniform
distribution on [—0.7,0.7]. Finally, the outcome variable ¥, € {—1,1} is sampled according
to the following probability,

Pr(Y,=1|2%,V)) = a(ZB+V, v+b) (2.17)

where an affine transformation defined by constants {a, b} is applied such that the magnitude
of the ATEs roughly equals the values specified above.

For the simulations with incorrectly specified models, we include unmodeled nonlinear
terms based on the pre-treatment covariates in the data generating process. Specifically,
V, includes the interaction term between the first and second pre-treatment covariates and
the square term of the third pre-treatment covariate in addition to the main effect term for
each of the three covariates, i.e., Ly = 5. As before, the outcome variable is generated after
an affine transformation in order to keep the size of the ATEs approximately equal to the
pre-specified levels given above so that the two sets of simulation results can be compared.

Figure 2.1 summarizes the simulation results. Under each simulation scenario, we com-
pute both the false discovery rate (FDR) and the discovery rate (DR) for each method. The
first row of the figure presents the FDR with respect to the largest estimated effect. That
is, we compute the proportion of times the largest estimated effect is actually not the true
largest effect. The second row shows the corresponding DR, which represents how often a

method can correctly identifies the largest effect as the largest. The results show that across
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Figure 2.1: False Discovery Rates and Discovery Rates for Selecting the Best Treatments
among a Large Number of Available Treatments. Simulation results with correct
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specification (left column) and incorrect specification (right column) are shown. The figure
compares the performance of the proposed method (SVM; solid lines) to that of BART
(BART; dashed lines), Boosting (Boost; dotted lines), and Bayesian logistic regression with
a non-informative prior (GLM; dashed-dotted lines). The top row presents how often the

largest estimated effect is actually not the true largest effect. The second row shows how

often a method can correctly identifies the largest effect as the largest. The third row plots

how often a method identifies the sign of estimated non-zero effects incorrectly, while the

fourth row presents the proportion of sign agreement for the three treatments with
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simulations the proposed method (SVM; solid lines) has small FDR while its DR is compet-
itive with other methods. In particular, the proposed method dominates all other methods
in terms of FDR when the model is correctly specified. The comparison with BART reveals
a key feature of the proposed method. The latter less often identifies the best treatment,
but when it does the method does so more accurately. As expected, the performance of the
proposed method improves as the sample size increases though this is not necessarily the
case for some other methods. For all methods, model misspecification increases FDR and
reduces DR.

The final two rows of Figure 2.1 present FDR and DR for the sign agreement of treat-
ments with substantive effects (those treatments whose ATEs are 7, 5, and —3 percentage
points). The third row plots how often a method identifies the sign of estimated non-zero
effects incorrectly. The fourth row presents the proportion of sign agreement for the three
treatments whose ATEs are of substantive magnitude. Similar to the results above, the pro-
posed method has small FDR across various simulation scenarios. However, the proposed
method is conservative in that its DR is lower than some of the alternative methods con-
sidered here. The comparison with BART most clearly illustrates this point. As before, the
performance of the proposed method improves as the sample size increases and if the model
is specified correctly.

2.3.2 Identifying Subpopulations for Which a Treatment is Bene-
ficial

In the second set of simulations, we consider the problem of identifying subpopulations
for which a treatment is beneficial (or harmful). In this case, we are interested in iden-
tifying interactions between a treatment and observed pre-treatment covariates. The key
difference between this simulation and the previous one is that in the current setup causal
heterogeneity variables (treatment-covariate interactions) may be correlated with each other
as well as other non-causal variables. In contrast, the previous simulation setting assumes
that causal heterogeneity variables (treatment indicators) are independent of each other and

other variables.
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In the current simulation, we have a single treatment condition, i.e., K = 1, and twenty
pre-treatment covariates X,. The pre-treatment covariates are all based on the multivariate
normal distribution with mean zero and a random variance-covariance matrix as in the
previous simulation study although in this simulation five of them are discretized using 0.5
as a threshold. In our setting, causal heterogeneity variables Z, consist of twenty treatment-
covariate interactions plus the main effect for the treatment indicator while V, is composed of
the main effects for the pre-treatment covariates. As a result, we have Lz = 21 and Ly = 20

Given this setup, we generate the outcome variable Y in the same way as in Section 2.3.1
according to the linear probability model. There are two pre-treatment covariates that
interact with the treatment in a systematic manner. We apply an affine transformation
so that an observation whose values for these two covariates are one standard deviation
above the mean have the conditional average treatment effect of approximately 4 and —2.5
percentage points. Specifically, we set 8 = {2.5, —1.5,...} and v = {50, —30, 30, 20, —20, .. .}
where the ... denotes uniform draws between [—0.7,0.7].

In the left column of Figure 2.2, we compare false discovery rate (FDR) and discovery rate
(DR) of the largest effect for our proposed method (SVM; solid lines) with those for Bayesian
logistic regression with a non-informative prior distribution (GLM; dotted and dashed lines).
The right column of the figure gives the same plots for non-zero substantive effects. For
Bayesian GLM, we consider two rules; one based on posterior means of coefficients (dashed
lines) and the other selecting coefficients that are statistically significant with p-values below
0.1 (dotted lines). The interpretation of these plots is identical to that of the plots in
Figure 2.1. Unlike the simulations given in Section 2.3.1, neither BART nor boosting provide
a simple rule for variable selection in this setting and hence the results are not reported in
this figure. Figure 2.2 shows that when compared with the Bayesian GLM, the proposed
method has a lower FDR for both estimated largest effect and substantive effects. The
GLM with the p-value thresholding yields an FDR that is closer to the FDR of the proposed

method, but the latter produces a higher DR and hence is more powerful.
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Figure 2.2: False Discovery Rates and Discovery Rates for Identifying Subpopulations for
Which a Treatment is Most Effective (or Harmful). The figure compares the performance
of the proposed method (SVM; solid lines) with the Bayesian logistic regression with a
non-informative prior (GLM; dashed and dotted lines). For Bayesian GLM, we examine the
estimates based on posterior means (dashed lines) and the statistical significance (p-value
less than 0.1). The top left plot presents how often the largest largest estimated effect is
actually not the true largest effect. The bottom left plot shows how frequently a method
can correctly identifies the largest effect as the largest. Similarly, the right column shows
the plots about FDR and DR with respect to substantive effects.

To further evaluate the relative performance of the proposed method in this simulation
setting, we consider the classification rule based on each method. We then apply these
classification rules to a new simple random sample of 2000 observations from the same data
generating process and then compute two types of payoffs for assigning the treatment to an

observation. First, the “probability payoft” p, for assigning the treatment to observation 1
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is calculated as p, = Pr(Y;(1) = 1 | X,) — Pr(Y,(0) = 1 | X,). The probability payoff is
the extent to which administering the treatment makes the event Y, = 1 more likely. We
next define the “classification payoff” as ¢, = 2 x 1{p, > 0} — 1. That is, the classification
payoff is 1 if the treatment makes observing Y, = 1 more likely, and —1 if it makes observing
Y, = 1 less likely. For each observation treated, payoff p, or ¢, is received while for untreated
observations, payoff zero is received. The classification rule for each method is to treat if
P, > 0.

Finally, we compute the cumulative classification and probability payofts by considering
the situation where only a certain subset of the new sample can be classified to the treatment
group. This addresses the possibility that policy makers can only afford giving the treatment
to a certain number of units because of a budget constraint. The cumulative payoffs for the
maximum k% possible treated units can be computed by ordering all the units according
to the estimates of p, and then classifying no greater than the k% top units with positive
estimated payofts.

Figure 2.3 evaluates the relative performance of the proposed method in terms of cu-
mulative classification (left column) and probability (right column) payoffs. The horizontal
axis represents the maximum percentage of new observations that can be classified to the
treatment condition. Each row represents different sample sizes for simulations. As the
benchmarks, we also include the random classification rule as well as the oracle classification
rule where the oracle knows each true p,, and treats only those observations with positive p,.

The figure shows that, in terms of prediction, our proposed method is competitive with
others. As expected, the performance of all the methods approaches that of the oracle clas-
sification rule as the sample size increases. The method dominates other methods, in terms
of both cumulative probability and classification payoff. Unlike other methods, the proposed
method’s cumulative payoffs do not decrease sharply, with payoffs eventually plateauing as
the maximum percentage increases and approaches 100%. This indicates that the classifica-

tion rule based on the proposed method is conservative in terms of identifying observations
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Figure 2.3: Comparison of Cumulative Classification and Probability Payoffs across
Methods. The horizontal axis represents the maximum percentage of new observations that
can be classified to the treatment condition. The proposed method (SVM; thick solid lines)
is compared with BART (BART; dashed lines), Boosting (Boost; dotted lines), and the
Bayesian logistic regression with a non-informative prior (GLM; dash-dotted lines). The
plots also include the oracle classification rule and the random classification rule (thin solid
lines) as the benchmarks. Each row represents different sample sizes for simulations.
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that benefit from the treatment but rarely classifies observations to the treatment when the
treatment is harmful for them.

This important advantage of our method is shown more clearly in Figure 2.4. In this
figure, we examine the rate of change of the cumulative classification payoff (the left column
of Figure 2.3), decomposed into its positive and negative components. The left column shows
the proportion of units assigned to the treatment that actually benefit from the treatment,
while the middle column shows the proportion of those units that are hurt by the treatment.
The oracle never misclassifies observations and hence is represented by the horizontal line at
zero in the figures of the middle column. The right column presents the total classification
payoff at each percentile, i.e., the positive effects (left column) minus the negative effects
(middle column). Each row represents a different sample size.

Figure 2.4 shows that when the sample size is small, the proposed method has the ad-
vantage of selecting more observations which benefit from the treatment than those who are
harmed by it. In contrast, other methods often incorrectly classify observations to the treat-
ment even when they are harmed by the treatment. This can be seen from the figures in the
middle column where the result based on the proposed method (SVM; solid thick lines) stays
close to the horizontal zero line when compared to other methods. Similarly, in the right
column, the results based on the proposed method stay above zero. When these lines go
below zero as they do for other methods, it implies that a majority of observations assigned
to the treatment are worse off by receiving the treatment. The disadvantage of the proposed
method is its conservativeness. This can be seen in the left column where at the beginning
of the percentile the solid thick line is sometimes below other methods, for smaller sample
sizes. As the sample size increases, and the advantage of the proposed method pesists.

2.4 Empirical Applications

In this section, we apply the proposed method to two landmark field experiments in
the social sciences. First, we analyze the get-out-the-vote (GOTV) field experiment where
forty nine unique combinations of mobilization techniques were randomly administered to

registered New Haven voters in the 1998 election (Gerber and Green, 2000). Second, we
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Figure 2.4: Rate of Change in the Classification Payoff for Each Method. The figure
presents the proportion of treated units (based on the classification rule of each method)
who benefit from the treatment (left column), are harmed by the treatment (middle
column), and the difference between the two (right column) at each percentile of the total
sample who can be assigned to the treatment. The oracle (solid lines) never misclassifies
the observations and hence is identical to the horizontal line at zero in the middle column.
The proposed method {SVM: solid thick lines) makes fewer misclassification than other
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analyze the data from the National Supported Work Demonstration (NSW) where the job
training program was randomly assigned to qualified disadvantaged workers. In both cases,
we use the proposed method to identify treatment effect heterogeneity.

2.4.1 Selecting the Best Get-Out-the-Vote Mobilization Strategy

We first analyze the New Haven GOTYV field experiment. To avoid the problem of
possible interference between voters, we focus on 14,774 voters in single voter households.
For the purpose of illustration, we also ignore the implementation problems documented
in Imai (2005) and analyze the most recent data set. The original experiment used an
incomplete, imbalanced factorial design, with four factors consisting of: one of three appeals
(civic duty, neighborhood solidarity, or a close election), zero to three mailings sent, seven
possible phone messages, and a personal visit. The control group consists of 5,269 voters.
Additional information on each voter includes age, residence ward, whether registered for a
majority party, whether she voted in the 1996 election, and whether she abstained in the
1996 election. All main-, two-, three-, and four-way interactions generate 279 combinations.
The number of observations assigned to the treatment combinations range dramatically, with
eleven combinations having only a single observation and a maximum of 7,424 (receiving at
least one mailing).

We apply the proposed method to select the best GOTV mobilization strategy out of 279
alternatives by identifying treatment combinations that have non-zero effects. We consider
two model specifications. In Model 1, the causal heterogeneity variables Z includes the
binary indicator variables of 279 treatment combinations, i.e., K = 279. In Model 2, we
interact these binary treatment indicators with the past turnout, i.e., Kz = 558. For both
models, we have the same set of the non-causal variables V', which consist of the main
effect terms of three pre-treatment covariates, therc two-way interaction terms among these
variables, and the square of age variable, i.e., Ky = 11.

Table 2.1 present the estimated non-zero coeflicients for the models with (right column)
and without (middle column) the interactions between the treatments and the turnout in-

dicator variable for the 1996 election. As shown in the table, the proposed methodology



Treatment Previous voter

Model Model
Pretreatment Covariate Coefficients
Intercept -0.1280 -0.1282
Age 0.0065 0.0066
Majority Party 0.0617 0.0619
1996 Voter 0.2040 0.2162
1996 Voter * Majority Party 0.1002 0.1018
1996 Abstained -0.2328 -0.2323
1996 Abstained*Age -0.0038 -0.0038
1996 Abstained*Majority Party -0.0206 -0.0201
CATE Coefficients
Treatment Schedule
Visited Phoned Mailings Appeal
" No No Any  Any -0.0240  -0.0231
No No Two Civic Duty -0.0028 -0.0025
No No Two Close Election -0.0034 -0.0032
No Yes One Civic Duty -0.0147 -0.0119
No Yes One Civic Duty -0.0078 -0.0064
No Yes Two Civic Duty 0.0160 0.0149
No Yes Two Civic Duty -0.0364 -0.0352
No Yes Three Civic Duty -0.0245 -0.0195
No Yes Three Solidarity -0.0201 -0.0105
No Yesl Two Close Election 0.0063 0.0056
Yes No No Solidarity 0.0033 0.0020
CATE Coefficients for Previous Voters
" No  Yes  One  CivicDuwy - -0.1211
No Yes Three Civic Duty -0.0269
No Yes One Solidarity -0.0068
No Yes Any Solidarity 0.0323
Yes No No Any 0.0060

47

Table 2.1: Estimated Non-zero Coefficients for the Models With and Without Interactions
Between Treatments and Turnout in the 1996 Election. The coefficients can be read based
off of the treatment schedule. For example, the first CATE coefficient is an estimated effect
for someone who was not visited, not phoned, and received any mailing or appeal.
Estimated coeflicients of the treatment variables have been rescaled so that they

correspond to the estimated Conditional Average Treatment Effect.

produces a small set of non-zero coefficients and estimates all other coefficients to be zero.
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Model 1 (the model without the interaction terms) shows that among 279 possible treat-
ments combinations including a personal visit are the most efficacious. Every negative effect
corresponds with a treatment that does not contain a personal visit. While a personal visit
increases turnout on average by about 2-3 percentage points, phone calls and mailings alone

do not appear to increase turnout.

Sample Average  Estimated ATE, Estimated ATE,

Treatment Model Previous voter model

Personal Visit 0.0389 0.0250 0.0235
Phone Call -0.0459 0.0044 0.0043
Mailing -0.0025 -0.0037 -0.0035

Table 2.2: Estimated average treatment effect, for each personal visits, phone calls, and
mailings. The sample average appears in the leftmost column. The next two columns
contain the estimated ATEs from the two models fit using the proposed method. The
sharp negative effect for the phone call disappears, while the positive effect for a personal
visit is estimated at a substantively important level.

To ease interpretation, the fitted models were used to estimate ATEs for each treatment
type; the results are presented in table 2.2. Personal visits have the strongest impact on
turnout. The finding that a phone call depresses turnout has sparked a debate in the
literature (Imai, 2005). The selected model predicts only a negligible impact for from phone
calls, suggesting that the strong negative effect is the result of imbalance in the original
design, rather than representative of a systematic effect.

Table 2.1 suggests underlying complex relationships within the data. There are several
coefficients that vary by whether the individual had voted in the past. Among recipients of
a phone call who were not visited, the number of mailings and the type of appeal appear
to be interacting. Table 2.3 illustrates this complex interaction, where each cell contains
the average number of voters by treatment type, among those individuals who were called
but not visited. The Close Election appeal provides the starkest example. Increasing the
number of mailings from zero to three with a Close Election appeal discourages previous

non-voters (22% to 9%), but encourages previous voters (59% to 76%). Civic Duty appeals
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grow less effective for previous non-voters, as the number of mailings increases (19% to 6%),
but there is no effect on previous voters. The Solidarity appeal has little impact on previous
non-voters, but discourages previous voters (62% to 48%).

The proposed method provides several insights into this experiment that have gone un-
noticed previously. These insights can directly inform GOTYV planners. It is well known that
visiting potential voters is the most reliable way to increase turnout; it is also the most expen-
sive. In lieu of canvassing voters, Close Election appeals should be made to previous voters,
and followed up with mailings. Continued mailings discourage previous non-voters, but a
phone call with a Close Election appeal encourages them. The Civic Duty and Solidarity

appeals do not encourage turnout.
2.4.2 Identifying Workers for Whom a Job Training Program is
Beneficial

Next, we apply the proposed methodology to the Manpower Demonstration Research
Corporation’s National Supported Work (NSW) Program, which was conducted from 1975
to 1978 over 15 sites in the United States. Disadvantaged workers who qualified for this job
training program consisted of welfare recipients, ex-addicts, young school dropouts, and ex-
offenders. Participants were unemployed and had not maintained a job for more than three
months of the past half year. The job training was randomly administered to 3,214 such
workers while 3,402 belonged to the control group. Our analysis focuses upon the subset of
these individuals previously used by other researchers (LaLonde, 1986; Dehejia and Wahba,
1999). In this reduced sample, the size of the treatment and control groups is 297 and 425,
respectively. We consider the binary outcome of interest measured as whether the earnings
increased after the job training program (1978) compared to the earnings before the program
(1975). The pre-treatment covariates include 1975 earnings, age, years of education, race
(black, white, or hispanic), marriage status (married or single), whether a worker has a
college degree, and whether the worker was unemployed in 1975.

In our analysis, we use the proposed methodology to answer two important questions

related to treatment effect heterogeneity. First, we seek to identify the subpopulations for
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which the job training program is beneficial. The program was administered to the hetero-
geneous group of workers and hence it is of interest to investigate whether the treatment
effect varies as a function of individual characteristics. Second, we show how to generalize
the resu